
Aaron Paterson CSC318 Project 1

Weighted and randomized polyalphabetic
substitution ciphers to avoid language
detection through frequency analysis.

 Abstract

 At each step in any encryption or decryption process, substitutions are being made to
modify a message. You could imagine every encryption or decryption process like this, as a
composition of many different substitution ciphers. Furthermore, all substitution ciphers share
the vulnerability of frequency analysis. As far as I know, frequency analysis is always performed
at some point in the process of message cracking, and even if a message is not immediately
vulnerable, it becomes so as soon as an attacker can predict the likelihoods of particular
substitutions. So, a cipher that is resistant to frequency analysis could be applied to a multiple
encryption process, to cryptographically strengthen it, or at least to make cracking it harder.

 Description
 I would like to propose a specific form of polyalphabetic substitution cipher, which can
make frequency analysis much more difficult in one of two ways: either by matching the relative
frequencies in the cyphertext to English closely but incorrectly, or by making every relative
frequency in the cyphertext equal. The former prevents substitutions from being recognized in
frequency analysis, but only when applied to English plaintext, while the latter can be applied to
any plaintext, but is a weaker cypher on its own. Both can act as a preliminary step in stronger
encryption systems, and neither should be used as a standalone encryption system.

 In the first cypher, the number of possible substitutions for each letter is its relative
frequency times ten, rounded when necessary. So before shuffling the key, “a” will have the
possible substitutions “a1 a2 a3 a4 a5 a6 a7 a8”, “b” will have “b1”, “c” will have “c1 c2”, and
so on for a total of 100 possible substitutions. After shuffling the key, Alice must exchange it
with Bob before sending him a message. Alice and Bob may also use a shorter key to seed a
pseudorandom number generator that shuffles the identity key for the first form of cypher, or
they may just transmit a key securely with a separate three-pass key exchange method

 Implementation

 A program written in java has been placed in cas3-106 in the directory
/home/students/apaterson/Project. It can be executed with java PolyCypher.java.
The program will either generate a random key, regenerate a key from a seed passed with the -s
flag, or use a full key passed with the -k flag. It can encrypt plaintext passed with the -e flag,
and decrypt cyphertext passed with the -d flag. For example, this is the key generated using the
pseudorandom seed “Herscovici”:

Aaron Paterson CSC318 Project 2

a 8 a1 a2 a3 a4 a5 a6 a7 a8 n 7 n1 n2 n3 n4 n5 n6 n7 a o4 s3 o2 y1 n3 e5 e2 b1 n a7 r2 h1 n5 s2 n2 l2
b 1 b1 o 7 o1 o2 o3 o4 o5 o6 o7 b n7 o v1 t7 h6 r3 c2 o6 r5
c 2 c1 c2 p 2 p1 p2 c a5 e6 p e8 o1
d 4 d1 d2 d3 d4 q 1 q1 d s6 x1 r7 j1 q p2
e 9 e1 e2 e3 e4 e5 e6 e7 e8 e9 r 8 r1 r2 r3 r4 r5 r6 r7 r8 e q1 z1 a3 o5 f2 a6 i7 h4 h5 r i8 h2 i5 g2 a1 l3 e1 h3
f 2 f1 f2 s 6 s1 s2 s3 s4 s5 s6 f t2 d3 s y2 e3 s1 t6 p1 w2
g 2 g1 g2 t 8 t1 t2 t3 t4 t5 t6 t7 t8 g n1 l1 t d2 w1 m1 u3 g1 r4 n6 o3
h 6 h1 h2 h3 h4 h5 h6 u 3 u1 u2 u3 h r6 w3 t4 d1 t5 u2 u t8 a8 i6
i 8 i1 i2 i3 i4 i5 i6 i7 i8 v 1 v1 i c1 e7 r1 k1 i3 m2 a4 t3 v r8
j 1 j1 w 3 w1 w2 w3 j a2 w f1 d4 e4
k 1 k1 x 1 x1 k s5 x n4

l 4 l1 l2 l3 l4 y 2 y1 y2 l o7 i1 i2 e9 y s4 u1
m 2 m1 m2 z 1 z1 m i4 l4 z t1

Figure 1: The unshuffled weighted key (in white) and the shuffled weighted key (in
gray).
java PolyCypher.java -s Herscovici

Now, we simply use the key as we would with a typical substitution cypher, with the
caveat that we must randomly chose one of several characters to replace the more frequent
letters. For example, this is a list of possible cyphertexts given the plaintext
“theaeontheaeontheaeon”:

“W1U2O5S3H5O6A7W1W3H5S3F2O6N2R4T5A3Y1Z1R5S2”
“M1R6F2E5Q1O6N2M1T4H5S3Q1H6H1G1T5A6O4O5H6H1”
“R4R6F2O4Q1H6L2R4R6O5B1A6V1S2R4W3Q1O4H4R5R2”
“O3T5A6O2H5C2N5D2T4F2S3Q1C2N2G1D1F2Y1H5R3A7”
“D2T5A6O4A3R5A7W1T5O5S3H4H6N5O3W3H5N3H5T7S2”
“theaeontheaeontheaeon”
“theaeontheaeontheaeon”
“theaeontheaeontheaeon”
“theaeontheaeontheaeon”
“theaeontheaeontheaeon”

Figure 2: Differing cyphertext (in white) and matching plaintext (in gray).
java PolyCypher.java -s Herscovici -e theaeontheaeontheaeon
java PolyCypher.java -s Herscovici -d <in white>

In this case, I chose a plaintext with the most frequently used English letters, to show that
their relative frequencies no longer correspond to relative frequencies in the cyphertext. The
opposite effect will be seen in a longer English plaintext.

Attack

 Like the process of Alice and Bob using the substitution cypher, the process of Eve
attacking the cyphertext with a frequency analysis also seems familiar. In fact, after encryption
the frequencies of letters will have barely changed from their original values. We can see from
the key and the cyphertext that the highest frequency letters have been randomly substituted for
several lower frequency letters, making the cypher appear to the analysis as very weakly

Aaron Paterson CSC318 Project 3

encrypted, or even unencrypted, sample. Obviously, this analysis does not include the numbers,
but they could be substituted with letters as well, numbers are just easier to read and test.

Frequencies Frequencies | Frequencies Frequencies
 in file in English | in file in English
----------- ----------- | ----------- -----------
 I: 0.111 e: 0.127 | R: 0.030 m: 0.024
 E: 0.103 t: 0.091 | M: 0.030 w: 0.023
 T: 0.085 a: 0.082 | Y: 0.022 f: 0.022
 A: 0.081 o: 0.075 | G: 0.015 y: 0.020
 S: 0.070 i: 0.070 | F: 0.011 g: 0.020
 P: 0.066 n: 0.067 | D: 0.011 p: 0.019
 L: 0.066 s: 0.063 | X: 0.007 b: 0.015
 H: 0.055 h: 0.061 | W: 0.004 v: 0.010
 O: 0.048 r: 0.060 | V: 0.004 k: 0.008
 N: 0.048 d: 0.043 | K: 0.004 j: 0.002
 C: 0.044 l: 0.040 | Z: 0.000 z: 0.001
 B: 0.044 u: 0.028 | Q: 0.000 x: 0.001
 U: 0.041 c: 0.028 | J: 0.000 q: 0.001

Frequencies Frequencies | Frequencies Frequencies
in file in English | in file in English
----------- ----------- | ----------- -----------
E: 0.120 e: 0.127 | M: 0.030 m: 0.024
A: 0.102 t: 0.091 | U: 0.019 w: 0.023
I: 0.094 a: 0.082 | Q: 0.019 f: 0.022
O: 0.086 o: 0.075 | K: 0.015 y: 0.020
N: 0.071 i: 0.070 | G: 0.015 g: 0.020
T: 0.064 n: 0.067 | D: 0.015 p: 0.019
S: 0.056 s: 0.063 | P: 0.011 b: 0.015
H: 0.053 h: 0.061 | B: 0.011 v: 0.010
W: 0.045 r: 0.060 | V: 0.008 k: 0.008
R: 0.045 d: 0.043 | F: 0.008 j: 0.002
Y: 0.038 l: 0.040 | J: 0.004 z: 0.001
C: 0.038 u: 0.028 | Z: 0.000 x: 0.001
L: 0.034 c: 0.028 | X: 0.000 q: 0.001

Frequencies Frequencies | Frequencies Frequencies
in file in English | in file in English
----------- ----------- | ----------- -----------
I: 0.120 e: 0.127 | U: 0.026 m: 0.024
E: 0.105 t: 0.091 | M: 0.026 w: 0.023
N: 0.102 a: 0.082 | Y: 0.015 f: 0.022
O: 0.090 o: 0.075 | Z: 0.011 y: 0.020
A: 0.083 i: 0.070 | G: 0.011 g: 0.020
T: 0.071 n: 0.067 | F: 0.011 p: 0.019
R: 0.056 s: 0.063 | V: 0.008 b: 0.015
S: 0.049 h: 0.061 | Q: 0.008 v: 0.010
D: 0.049 r: 0.060 | K: 0.008 k: 0.008
H: 0.045 d: 0.043 | X: 0.004 j: 0.002
W: 0.038 l: 0.040 | P: 0.004 z: 0.001
L: 0.030 u: 0.028 | J: 0.000 x: 0.001
C: 0.030 c: 0.028 | B: 0.000 q: 0.001

Frequencies Frequencies | Frequencies Frequencies
in file in English | in file in English
----------- ----------- | ----------- -----------
O: 0.117 e: 0.127 | G: 0.026 m: 0.024
E: 0.117 t: 0.091 | M: 0.023 w: 0.023
N: 0.102 a: 0.082 | D: 0.019 f: 0.022
A: 0.094 o: 0.075 | C: 0.019 y: 0.020
I: 0.090 i: 0.070 | F: 0.015 g: 0.020
T: 0.071 n: 0.067 | Q: 0.011 p: 0.019
R: 0.056 s: 0.063 | P: 0.011 b: 0.015
U: 0.049 h: 0.061 | Z: 0.008 v: 0.010
H: 0.038 r: 0.060 | V: 0.008 k: 0.008
L: 0.034 d: 0.043 | K: 0.004 j: 0.002
Y: 0.030 l: 0.040 | B: 0.004 z: 0.001
W: 0.030 u: 0.028 | X: 0.000 x: 0.001
S: 0.026 c: 0.028 | J: 0.000 q: 0.001

Figure 3: Relative frequencies of short English plaintext (gray) and possible
cyphertext (white) remain mostly unchanged.
frequencies cyphertext
java PolyCypher.java -s Herscovici -e "$(cat plaintext)" >
cyphertext
java PolyCypher.java -s Herscovici -d "$(cat cyphertext)"

 Instead of a traditional frequency analysis, we might instead assume that the frequency of
letters in the cyphertext is inversely proportional to their frequency in plain English. However,
looking at the key, we can see that some common letters still represent other common letters, and
some uncommon letters still represent other uncommon letters. So, we have not reversed the
correlation that frequency analysis attempts to find, nor have we amplified it, but instead just
weakened it as much as possible.

The only other known-cyphertext attack I can imagine is finding substrings that are not
found in the cyphertext, recording which ones cannot be polygraphs, and working backwards by
the process of elimination, which seems like a monumental task. But this was to be expected,
many simple algorithms are considered uncrackable with known cyphertext attacks.

Improvements

Aaron Paterson CSC318 Project 4

The biggest remaining weakness in the algorithm, from the substitution standpoint, is that
our relative frequencies in the plaintext must closely match English to get a good variance of
substitutions in the key. We can start to fix this by using our own plaintext relative frequencies in
place of the English ones. This will not significantly change our algorithm, but it will
unfortunately make it weaker when used on its own, because the relative frequencies in our
cyphertext will match the relative frequencies in our plaintext:

Frequencies Frequencies | Frequencies Frequencies
 in file in English | in file in English
----------- ----------- | ----------- -----------
 T: 0.090 e: 0.127 | B: 0.030 m: 0.024
 I: 0.086 t: 0.091 | W: 0.026 w: 0.023
 P: 0.083 a: 0.082 | J: 0.026 f: 0.022
 A: 0.083 o: 0.075 | Z: 0.023 y: 0.020
 L: 0.071 i: 0.070 | X: 0.023 g: 0.020
 E: 0.071 n: 0.067 | K: 0.023 p: 0.019
 S: 0.053 s: 0.063 | G: 0.023 b: 0.015
 H: 0.045 h: 0.061 | F: 0.023 v: 0.010
 M: 0.034 r: 0.060 | N: 0.019 k: 0.008
 C: 0.034 d: 0.043 | V: 0.015 j: 0.002
 Y: 0.030 l: 0.040 | O: 0.011 z: 0.001
 U: 0.030 u: 0.028 | D: 0.011 x: 0.001
 R: 0.030 c: 0.028 | Q: 0.008 q: 0.001

Figure 4: The relative frequencies in the cyphertext now closely match those from
the plaintext in Figure 3. On its own this is a weaker cypher, but it provides more
variance for other cyphers to work with.
frequencies relativecyphertext
java PolyCypher.java -r -e "$(cat plaintext)" >
relativecyphertext
<copy and separate the key from the cyphertext>
java PolyCypher.java -r -k "$(cat relativecyphertextkey)" -d
"$(cat relativecyphertext)

 The advantage of this is that additional cyphers will be more effective, as the highest
frequencies will possess many different substitutions, as they would in any asymmetric
encryption algorithm. And, once we can match the relative frequencies consistently, we can
manipulate them further, for example by making every letter have approximately equal
frequencies, or by mimicking the relative frequencies of other languages. Only a few more lines
of code give the normalized relative frequency cypher, which just flips all the relative
frequencies across their average before creating the key:

Frequencies Frequencies | Frequencies Frequencies
 in file in English | in file in English
----------- ----------- | ----------- -----------
 Z: 0.086 e: 0.127 | B: 0.034 m: 0.024
 Q: 0.086 t: 0.091 | H: 0.023 w: 0.023
 Y: 0.079 a: 0.082 | D: 0.023 f: 0.022
 M: 0.079 o: 0.075 | U: 0.019 y: 0.020
 K: 0.079 i: 0.070 | R: 0.019 g: 0.020
 J: 0.079 n: 0.067 | V: 0.011 p: 0.019
 I: 0.060 s: 0.063 | N: 0.011 b: 0.015
 W: 0.056 h: 0.061 | G: 0.011 v: 0.010
 A: 0.053 r: 0.060 | S: 0.008 k: 0.008

Aaron Paterson CSC318 Project 5

 L: 0.049 d: 0.043 | P: 0.008 j: 0.002
 F: 0.049 l: 0.040 | T: 0.000 z: 0.001
 E: 0.045 u: 0.028 | O: 0.000 x: 0.001
 X: 0.034 c: 0.028 | C: 0.000 q: 0.001

frequencies normalizedcyphertext
java PolyCypher.java -n -e "$(cat plaintext)" >
normalizedcyphertext
<copy and separate the key from the cyphertext>
java PolyCypher.java -n -k "$(cat normalizedcyphertextkey)" -d
"$(cat normalizedcyphertext)"

This version of the process has the nicest properties to show off; the relative frequencies
of the cyphertext no longer match those of plaintext, both in order and in proportion, and the
digraphs and trigraphs are all split up. Unfortunately, several letters were not used, but they can
still be found in the key. They are not clustered around the lower frequencies though; the key is
just too large for this plaintext to use every substitution. This is just as much due to lack of
variance in the plaintext as it is to the key, as the length of the key is still exactly 200 characters,
which brings us to our last set of improvements.

This entire algorithm was implemented to look good as a demonstration, which limits its
potential effectiveness. The algorithm uses only thirty-five characters externally and internally,
and both the cyphertext and the key itself has been formatted to be easy to look at on paper.
There is no reason, for example, that we cannot use the same character sets for the first and
second mark on each key point; I was only using single letters and digits to avoid continuity.
Doing so could greatly increase the number of possible substitutions each character possesses,
without necessarily increasing the size of the key, because it could also hold more information.
The next step would be to just use byte pairs instead of letter-number pairs, which would not
change the algorithm significantly.

Alice and Bob would benefit if Eve could not see this detail, although she might guess it
eventually if she notices all their messages are of even length. In terms of analyzing the cypher, a
larger alphabet will make almost any cypher much stronger, so it is really a moot point. The
algorithm is most vulnerable to known plaintext attacks, although it slightly more well equipped
than a traditional substitution cypher, because Eve recovers less of the plaintext if she knows a
single letter of it than she would with the traditional cypher. This could easily be avoided by
complicating the algorithm, but it would better serve its purpose as a lightweight component in a
multi cypher with a separate component like a Vigenère cypher chosen to provide resistance to
known plaintext attacks. Hence, the version provided is the most vulnerable possible.

There is also potential in seeing how many layers can be conveniently added to the
cypher with a given key size. If separate sets of characters are still used for the letter and number
marks, they could be interleaved by keeping the letters and numbers in their own separate orders,
but weaving them between each other in the key. This would the key harder to interpret in a
known-key attack, and an extra 100 bits of information could be recovered from a 200-length
key in this way at no additional cost. However, it would probably be more practical to just use a
smaller key without separate character sets, and append information to it as necessary.

Aaron Paterson CSC318 Project 6

Conclusion

I think this cypher is part of a larger pattern that I would like to explore further, which is
taking decryption methods that are already known to be effective, and reverse engineering them
to make it harder for Eve to crack messages. I would also like to see which of these individual
cyphers can work well together and analyze the strength of smaller key sizes. There is already a
large set of encryption algorithms available for use on all computers, and they will probably stay
about the same until NP is partitioned further. So, a niche I feel is still worth exploring is finding
the most powerful cryptographic procedure that can easily performed with paper and pencil. This
serves as both a challenge, and a failsafe if urgent cryptographic power were ever necessary in
the absence of computers.

Many once trusted cyphers such as the Vigenère have suddenly revealed an unseen
weakness, sometimes after a strong sense of confidence has accumulated from decades of
frequent use. I would guess that this would be a much worse problem now more than ever, but
luckily, the technology that threatens cryptography is currently the same that strengthens it. This
cypher idea was the result of me imagining the worst-case scenario in a substitution cypher
assignment; it is designed to be hard for humans. There are still a few things left that humans
may do more effectively than computers, and if there is a such thing as an unbreakable
encryption algorithm, I think that it must be incomprehensible to computers. And so, I imagine
that algorithm would be written and performed on paper, or some other medium computers
cannot easily manipulate. Perhaps an artistic form stenography could work well for this cypher,
with the key hidden in the fine visual details of an image or drawing. But for now, at least until I
take color theory next semester, I am out of ideas.

